Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 154(5): 3019-3026, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955566

RESUMO

Hearing evolved in lampreys with a frequency range of 50-200 Hz. This hearing range is comparable to that of elasmobranchs, most non-teleosts, and lungfish. Elasmobranchs most likely use the saccule and the papilla neglecta (PN) for hearing. In non-teleosts and teleosts, lungfish, and certain tetrapods the saccule is the likely sensor for sound reception while the lagena and the PN are important for gravistatic sensing. Coelacanth and most tetrapods have a basilar papilla (BP) for hearing. In coelacanth and tetrapods, the hair cells of the BP are in contact with a basilar and a tectorial membrane. These membranes transmit mechanical vibrations. A cochlear aqueduct (CA) provides a connection between the cerebrospinal fluid that has a sodium rich space in coelacanth and tetrapods while the potassium rich endolymph is known in vertebrates. A unique feature is known in basic sarcopterygians, the intracranial joint, that never developed in actinopterygians and has been lost in lungfish and tetrapods. The BP in coelacanths is thought to generate pressure with the intracranial joint that will be transmitted to the CA. Lungs or a swim bladder are not forming in Chondrichthyes, structures that have a major impact on hearing in teleosts and tetrapods.


Assuntos
Peixes , Audição , Animais , Som , Sacos Aéreos , Células Ciliadas Auditivas
3.
IBRO Neurosci Rep ; 14: 325-341, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37006720

RESUMO

Sarcopterygians evolved around 415 Ma and have developed a unique set of features, including the basilar papilla and the cochlear aqueduct of the inner ear. We provide an overview that shows the morphological integration of the various parts needed for hearing, e.g., basilar papilla, tectorial membrane, cochlear aqueduct, lungs, and tympanic membranes. The lagena of the inner ear evolved from a common macula of the saccule several times. It is near this lagena where the basilar papilla forms in Latimeria and tetrapods. The basilar papilla is lost in lungfish, certain caecilians and salamanders, but is transformed into the cochlea of mammals. Hearing in bony fish and tetrapods involves particle motion to improve sound pressure reception within the ear but also works without air. Lungs evolved after the chondrichthyans diverged and are present in sarcopterygians and actinopterygians. Lungs open to the outside in tetraposomorph sarcopterygians but are transformed from a lung into a swim bladder in ray-finned fishes. Elasmobranchs, polypterids, and many fossil fishes have open spiracles. In Latimeria, most frogs, and all amniotes, a tympanic membrane covering the spiracle evolved independently. The tympanic membrane is displaced by pressure changes and enabled tetrapods to perceive airborne sound pressure waves. The hyomandibular bone is associated with the spiracle/tympanic membrane in actinopterygians and piscine sarcopterygians. In tetrapods, it transforms into the stapes that connects the oval window of the inner ear with the tympanic membrane and allows hearing at higher frequencies by providing an impedance matching and amplification mechanism. The three characters-basilar papilla, cochlear aqueduct, and tympanic membrane-are fluid related elements in sarcopterygians, which interact with a set of unique features in Latimeria. Finally, we explore the possible interaction between the unique intracranial joint, basicranial muscle, and an enlarged notochord that allows fluid flow to the foramen magnum and the cochlear aqueduct which houses a comparatively small brain.

5.
Neurosci Lett ; 806: 137244, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37055006

RESUMO

Two transcription factors, Atoh1 and Ptf1a, are essential for cochlear nuclei development. Atoh1 is needed to develop glutamatergic neurons, while Ptf1a is required to generate glycinergic and GABAergic neurons that migrate into the cochlear nucleus. While central projections of inner ear afferents are normal following loss of Atoh1, we wanted to know whether the loss of Ptf1a affects central projections. We found that in Ptf1a mutants, initially, afferents show a normal projection; however, a transient posterior expansion of projections to the dorsal cochlear nucleus occurs at a later stage. In addition, in older (E18.5) Ptf1a mutant mice, excessive neuronal branches form beyond the normal projection to the anterior and posterior ventral cochlear nuclei. Our results on Ptf1a null mice are comparable to that observed in loss of function Prickel1, Npr2, or Fzd3 mouse mutants. The disorganized tonotopic projections that we report in Ptf1a mutant embryos might be functionally relevant, but testing this hypothesis requires Ptf1a KO mice at postnatal stages that unfortunately cannot be performed due to their early death.


Assuntos
Núcleo Coclear , Orelha Interna , Animais , Camundongos , Núcleo Coclear/metabolismo , Orelha Interna/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Fatores de Transcrição/metabolismo
6.
Front Neural Circuits ; 16: 913480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213204

RESUMO

Somatosensory, taste, vestibular, and auditory information is first processed in the brainstem. From the brainstem, the respective information is relayed to specific regions within the cortex, where these inputs are further processed and integrated with other sensory systems to provide a comprehensive sensory experience. We provide the organization, genetics, and various neuronal connections of four sensory systems: trigeminal, taste, vestibular, and auditory systems. The development of trigeminal fibers is comparable to many sensory systems, for they project mostly contralaterally from the brainstem or spinal cord to the telencephalon. Taste bud information is primarily projected ipsilaterally through the thalamus to reach the insula. The vestibular fibers develop bilateral connections that eventually reach multiple areas of the cortex to provide a complex map. The auditory fibers project in a tonotopic contour to the auditory cortex. The spatial and tonotopic organization of trigeminal and auditory neuron projections are distinct from the taste and vestibular systems. The individual sensory projections within the cortex provide multi-sensory integration in the telencephalon that depends on context-dependent tertiary connections to integrate other cortical sensory systems across the four modalities.


Assuntos
Tronco Encefálico , Vestíbulo do Labirinto , Vias Aferentes , Tronco Encefálico/fisiologia , Telencéfalo , Tálamo/fisiologia , Vestíbulo do Labirinto/fisiologia
7.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946588

RESUMO

Asymmetric signalling centres in the early embryo are essential for axis formation in vertebrates. These regions (e.g. amphibian dorsal morula, mammalian anterior visceral endoderm) require stabilised nuclear ß-catenin, but the role of localised Wnt ligand signalling activity in their establishment remains unclear. In Xenopus, dorsal ß-catenin is initiated by vegetal microtubule-mediated symmetry breaking in the fertilised egg, known as 'cortical rotation'. Localised wnt11b mRNA and ligand-independent activators of ß-catenin have been implicated in dorsal ß-catenin activation, but the extent to which each contributes to axis formation in this paradigm remains unclear. Here, we describe a CRISPR-mediated maternal-effect mutation in Xenopus laevis wnt11b.L. We find that wnt11b is maternally required for robust dorsal axis formation and for timely gastrulation, and zygotically for left-right asymmetry. Importantly, we show that vegetal microtubule assembly and cortical rotation are reduced in wnt11b mutant eggs. In addition, we show that activated Wnt coreceptor Lrp6 and Dishevelled lack behaviour consistent with roles in early ß-catenin stabilisation, and that neither is regulated by Wnt11b. This work thus implicates Wnt11b in the distribution of putative dorsal determinants rather than in comprising the determinants themselves. This article has an associated 'The people behind the papers' interview.


Assuntos
Proteínas Wnt , Proteínas de Xenopus , Xenopus laevis , beta Catenina , Animais , Padronização Corporal/genética , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Ligantes , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento , beta Catenina/genética
8.
Front Aging Neurosci ; 14: 814528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250542

RESUMO

Age-related hearing loss (ARHL) is a common, increasing problem for older adults, affecting about 1 billion people by 2050. We aim to correlate the different reductions of hearing from cochlear hair cells (HCs), spiral ganglion neurons (SGNs), cochlear nuclei (CN), and superior olivary complex (SOC) with the analysis of various reasons for each one on the sensory deficit profiles. Outer HCs show a progressive loss in a basal-to-apical gradient, and inner HCs show a loss in a apex-to-base progression that results in ARHL at high frequencies after 70 years of age. In early neonates, SGNs innervation of cochlear HCs is maintained. Loss of SGNs results in a considerable decrease (~50% or more) of cochlear nuclei in neonates, though the loss is milder in older mice and humans. The dorsal cochlear nuclei (fusiform neurons) project directly to the inferior colliculi while most anterior cochlear nuclei reach the SOC. Reducing the number of neurons in the medial nucleus of the trapezoid body (MNTB) affects the interactions with the lateral superior olive to fine-tune ipsi- and contralateral projections that may remain normal in mice, possibly humans. The inferior colliculi receive direct cochlear fibers and second-order fibers from the superior olivary complex. Loss of the second-order fibers leads to hearing loss in mice and humans. Although ARHL may arise from many complex causes, HC degeneration remains the more significant problem of hearing restoration that would replace the cochlear implant. The review presents recent findings of older humans and mice with hearing loss.

9.
Front Cell Neurosci ; 15: 678113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211371

RESUMO

The two types of spiral ganglion neurons (SGNs), types I and II, innervate inner hair cells and outer hair cells, respectively, within the mammalian cochlea and send another process back to cochlear nuclei in the hindbrain. Studying these two neuronal types has been made easier with the identification of unique molecular markers. One of these markers, peripherin, was shown using antibodies to be present in all SGNs initially but becomes specific to type II SGNs during maturation. We used mice with fluorescently labeled peripherin (Prph-eGFP) to examine peripherin expression in SGNs during development and in aged mice. Using these mice, we confirm the initial expression of Prph-eGFP in both types I and II neurons and eventual restriction to only type II perikarya shortly after birth. However, while Prph-eGFP is uniquely expressed within type II cell bodies by P8, both types I and II peripheral and central processes continue to express Prph-eGFP for some time before becoming downregulated. Only at P30 was there selective type II Prph-eGFP expression in central but not peripheral processes. By 9 months, only the type II cell bodies and more distal central processes retain Prph-eGFP expression. Our results show that Prph-eGFP is a reliable marker for type II SGN cell bodies beyond P8; however, it is not generally a suitable marker for type II processes, except for central processes beyond P30. How the changes in Prph-eGFP expression relate to subsequent protein expression remains to be explored.

10.
Fac Rev ; 10: 47, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34131657

RESUMO

We review the molecular basis of three related basic helix-loop-helix (bHLH) genes (Neurog1, Neurod1, and Atoh1) and upstream regulators Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires early expression of Neurog1, followed by its downstream target Neurod1, which downregulates Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 and Neurog1 expression for various aspects of development. Several experiments show a partial uncoupling of Atoh1/Neurod1 (spiral ganglia and cochlea) and Atoh1/Neurog1/Neurod1 (cochlear nuclei). In this review, we integrate the cellular and molecular mechanisms that regulate the development of auditory system and provide novel insights into the restoration of hearing loss, beyond the limited generation of lost sensory neurons and hair cells.

11.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919542

RESUMO

We review the molecular basis of several transcription factors (Eya1, Sox2), including the three related genes coding basic helix-loop-helix (bHLH; see abbreviations) proteins (Neurog1, Neurod1, Atoh1) during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires Neurog1, followed by its downstream target Neurod1, to cross-regulate Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 expression for interactions with Atoh1. Upregulation of Atoh1 following Neurod1 loss changes some vestibular neurons' fate into "hair cells", highlighting the significant interplay between the bHLH genes. Further work showed that replacing Atoh1 by Neurog1 rescues some hair cells from complete absence observed in Atoh1 null mutants, suggesting that bHLH genes can partially replace one another. The inhibition of Atoh1 by Neurod1 is essential for proper neuronal cell fate, and in the absence of Neurod1, Atoh1 is upregulated, resulting in the formation of "intraganglionic" HCs. Additional genes, such as Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b, play a role in the auditory system. Finally, both Lmx1a and Lmx1b genes are essential for the cochlear organ of Corti, spiral ganglion neuron, and cochlear nuclei formation. We integrate the mammalian auditory system development to provide comprehensive insights beyond the limited perception driven by singular investigations of cochlear neurons, cochlear hair cells, and cochlear nuclei. A detailed analysis of gene expression is needed to understand better how upstream regulators facilitate gene interactions and mammalian auditory system development.


Assuntos
Células Ciliadas Auditivas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cóclea/citologia , Cóclea/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neurogênese/genética , Neurogênese/fisiologia , Fatores de Transcrição/genética
12.
Cell Tissue Res ; 384(1): 59-72, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33409653

RESUMO

The trochlear projection is unique among the cranial nerves in that it exits the midbrain dorsally to innervate the contralateral superior oblique muscle in all vertebrates. Trochlear as well as oculomotor motoneurons uniquely depend upon Phox2a and Wnt1, both of which are downstream of Lmx1b, though why trochlear motoneurons display such unusual projections is not fully known. We used Pax2-cre to drive expression of ectopically activated Smoothened (SmoM2) dorsally in the midbrain and anterior hindbrain. We documented the expansion of oculomotor and trochlear motoneurons using Phox2a as a specific marker at E9.5. We show that the initial expansion follows a demise of these neurons by E14.5. Furthermore, SmoM2 expression leads to a ventral exit and ipsilateral projection of trochlear motoneurons. We compare that data with Unc5c mutants that shows a variable ipsilateral number of trochlear fibers that exit dorsal. Our data suggest that Shh signaling is involved in trochlear motoneuron projections and that the deflected trochlear projections after SmoM2 expression is likely due to the dorsal expression of Gli1, which impedes the normal dorsal trajectory of these neurons.


Assuntos
Olho/fisiopatologia , Neurônios Motores/metabolismo , Nervo Troclear/fisiopatologia , Animais , Feminino , Humanos , Masculino , Camundongos
13.
Front Neurol ; 12: 768456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975728

RESUMO

The vestibular system is vital for proper balance perception, and its dysfunction contributes significantly to fall-related injuries, especially in the elderly. Vestibular ganglion neurons innervate vestibular hair cells at the periphery and vestibular nuclei and the uvula and nodule of the cerebellum centrally. During aging, these vestibular ganglion neurons degenerate, impairing vestibular function. A complete understanding of the molecular mechanisms involved in neurosensory cell survival in the vestibular system is unknown. Brain-derived neurotrophic factor (BDNF) is specifically required for the survival of vestibular ganglion neurons, as its loss leads to early neuronal death. Bdnf null mice die within 3 weeks of birth, preventing the study of the long-term effects on target cells. We use Pax2-cre to conditionally knock out Bdnf, allowing mice survival to approximately 6 months of age. We show that a long-term loss of Bdnf leads to a significant reduction in the number of vestibular ganglion neurons and a reduction in the number of vestibular hair cells. There was no significant decrease in the central targets lateral vestibular nucleus (LVN) or the cerebellum at 6 months. This suggests that the connectivity between central target cells and other neurons suffices to prevent their loss despite vestibular hair cell and ganglion neuron loss. Whether the central neurons would undergo eventual degeneration in the absence of Bdnf remains to be determined.

14.
Front Neurosci ; 15: 779871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153658

RESUMO

During development the afferent neurons of the inner ear make precise wiring decisions in the hindbrain reflective of their topographic distribution in the periphery. This is critical for the formation of sensory maps capable of faithfully processing both auditory and vestibular input. Disorganized central projections of inner ear afferents in Fzd3 null mice indicate Wnt/PCP signaling is involved in this process and ear transplantation in Xenopus indicates that Fzd3 is necessary in the ear but not the hindbrain for proper afferent navigation. However, it remains unclear in which cell type of the inner ear Fzd3 expression is influencing the guidance of inner ear afferents to their proper synaptic targets in the hindbrain. We utilized Atoh1-cre and Neurod1-cre mouse lines to conditionally knockout Fzd3 within the mechanosensory hair cells of the organ of Corti and within the inner ear afferents, respectively. Following conditional deletion of Fzd3 within the hair cells, the central topographic distribution of inner ear afferents was maintained with no gross morphological defects. In contrast, conditional deletion of Fzd3 within inner ear afferents leads to central pathfinding defects of both cochlear and vestibular afferents. Here, we show that Fzd3 is acting in a cell autonomous manner within inner ear afferents to regulate central pathfinding within the hindbrain.

15.
Mol Neurobiol ; 57(12): 5307-5323, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32880858

RESUMO

Ear development requires the transcription factors ATOH1 for hair cell differentiation and NEUROD1 for sensory neuron development. In addition, NEUROD1 negatively regulates Atoh1 gene expression. As we previously showed that deletion of the Neurod1 gene in the cochlea results in axon guidance defects and excessive peripheral innervation of the sensory epithelium, we hypothesized that some of the innervation defects may be a result of abnormalities in NEUROD1 and ATOH1 interactions. To characterize the interdependency of ATOH1 and NEUROD1 in inner ear development, we generated a new Atoh1/Neurod1 double null conditional deletion mutant. Through careful comparison of the effects of single Atoh1 or Neurod1 gene deletion with combined double Atoh1 and Neurod1 deletion, we demonstrate that NEUROD1-ATOH1 interactions are not important for the Neurod1 null innervation phenotype. We report that neurons lacking Neurod1 can innervate the flat epithelium without any sensory hair cells or supporting cells left after Atoh1 deletion, indicating that neurons with Neurod1 deletion do not require the presence of hair cells for axon growth. Moreover, transcriptome analysis identified genes encoding axon guidance and neurite growth molecules that are dysregulated in the Neurod1 deletion mutant. Taken together, we demonstrate that much of the projections of NEUROD1-deprived inner ear sensory neurons are regulated cell-autonomously.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Ciliadas Auditivas/metabolismo , Fibras Nervosas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Apoptose/genética , Axônios/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Epitélio/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/ultraestrutura , Camundongos Knockout , Modelos Biológicos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Órgão Espiral/patologia , Fatores de Transcrição SOXB1/metabolismo , Gânglio Espiral da Cóclea/metabolismo
16.
Ageing Res Rev ; 59: 101042, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173536

RESUMO

Age-related hearing loss (ARHL) is the most prevalent sensory deficit. ARHL reduces the quality of life of the growing population, setting seniors up for the enhanced mental decline. The size of the needy population, the structural deficit, and a likely research strategy for effective treatment of chronic neurosensory hearing in the elderly are needed. Although there has been profound advancement in auditory regenerative research, there remain multiple challenges to restore hearing loss. Thus, additional investigations are required, using novel tools. We propose how the (1) flat epithelium, remaining after the organ of Corti has deteriorated, can be converted to the repaired-sensory epithelium, using Sox2. This will include (2) developing an artificial gene regulatory network transmitted by (3) large viral vectors to the flat epithelium to stimulate remnants of the organ of Corti to restore hair cells. We hope to unite with our proposal toward the common goal, eventually restoring a functional human hearing organ by transforming the flat epithelial cells left after the organ of Corti loss.


Assuntos
Envelhecimento/patologia , Cóclea/patologia , Presbiacusia/patologia , Qualidade de Vida , Fatores de Transcrição SOXB1/metabolismo , Idoso , Células Ciliadas Auditivas/patologia , Perda Auditiva , Humanos
17.
Sci Rep ; 9(1): 10298, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311957

RESUMO

Inner ear sensory afferent connections establish sensory maps between the inner ear hair cells and the vestibular and auditory nuclei to allow vestibular and sound information processing. While molecular guidance of sensory afferents to the periphery has been well studied, molecular guidance of central projections from the ear is only beginning to emerge. Disorganized central projections of spiral ganglion neurons in a Wnt/PCP pathway mutant, Prickle1, suggest the Wnt/PCP pathway plays a role in guiding cochlear afferents to the cochlear nuclei in the hindbrain, consistent with known expression of the Wnt receptor, Frizzled3 (Fzd3) in inner ear neurons. We therefore investigated the role of Wnt signaling in central pathfinding in Fzd3 mutant mice and Fzd3 morpholino treated frogs and found aberrant central projections of vestibular afferents in both cases. Ear transplantations from knockdown to control Xenopus showed that it is the Fzd3 expressed within the ear that mediates this guidance. Also, cochlear afferents of Fzd3 mutant mice lack the orderly topological organization observed in controls. Quantification of Fzd3 expression in spiral ganglion neurons show a gradient of expression with Fzd3 being higher in the apex than in the base. Together, these results suggest that a gradient of Fzd3 in inner ear afferents directs projections to the correct dorsoventral column within the hindbrain.


Assuntos
Orelha Interna/metabolismo , Receptores Frizzled/genética , Rombencéfalo/metabolismo , Proteínas de Xenopus/genética , Animais , Receptores Frizzled/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Mutação , Gânglio Espiral da Cóclea/metabolismo , Via de Sinalização Wnt , Proteínas de Xenopus/metabolismo , Xenopus laevis
18.
Front Cell Dev Biol ; 7: 59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069224

RESUMO

Central nervous system neurons become postmitotic when radial glia cells divide to form neuroblasts. Neuroblasts may migrate away from the ventricle radially along glia fibers, in various directions or even across the midline. We present four cases of unusual migration that are variably connected to either pathology or formation of new populations of neurons with new connectivities. One of the best-known cases of radial migration involves granule cells that migrate from the external granule cell layer along radial Bergman glia fibers to become mature internal granule cells. In various medulloblastoma cases this migration does not occur and transforms the external granule cell layer into a rapidly growing tumor. Among the ocular motor neurons is one unique population that undergoes a contralateral migration and uniquely innervates the superior rectus and levator palpebrae muscles. In humans, a mutation of a single gene ubiquitously expressed in all cells, induces innervation defects only in this unique motor neuron population, leading to inability to elevate eyes or upper eyelids. One of the best-known cases for longitudinal migration is the facial branchial motor (FBM) neurons and the overlapping inner ear efferent population. We describe here molecular cues that are needed for the caudal migration of FBM to segregate these motor neurons from the differently migrating inner ear efferent population. Finally, we describe unusual migration of inner ear spiral ganglion neurons that result in aberrant connections with disruption of frequency presentation. Combined, these data identify unique migratory properties of various neuronal populations that allow them to adopt new connections but also sets them up for unique pathologies.

19.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-30984379

RESUMO

Interaction with the world around us requires extracting meaningful signals to guide behavior. Each of the six mammalian senses (olfaction, vision, somatosensation, hearing, balance, and taste) has a unique primary map that extracts sense-specific information. Sensory systems in the periphery and their target neurons in the central nervous system develop independently and must develop specific connections for proper sensory processing. In addition, the regulation of sensory map formation is independent of and prior to central target neuronal development in several maps. This review provides an overview of the current level of understanding of primary map formation of the six mammalian senses. Cell cycle exit, combined with incompletely understood molecules and their regulation, provides chemoaffinity-mediated primary maps that are further refined by activity. The interplay between cell cycle exit, molecular guidance, and activity-mediated refinement is the basis of dominance stripes after redundant organ transplantations in the visual and balance system. A more advanced level of understanding of primary map formation could benefit ongoing restoration attempts of impaired senses by guiding proper functional connection formations of restored sensory organs with their central nervous system targets.


Assuntos
Sinais (Psicologia) , Neurogênese , Olfato , Animais , Axônios , Camundongos , Neurônios
20.
Front Neuroanat ; 12: 99, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532697

RESUMO

The inner ear and its two subsystems, the vestibular and the auditory system, exemplify how the identification of distinct cellular or anatomical elements ahead of elucidating their function, leads to a medley of anatomically defined and recognition oriented names that confused generations of students. Past attempts to clarify this unyielding nomenclature had incomplete success, as they could not yet generate an explanatory nomenclature. Building on these past efforts, we propose a somewhat revised nomenclature that keeps most of the past nomenclature as proposed and follows a simple rule: Anatomical and explanatory terms are combined followed, in brackets, by the name of the discoverer (see Table 1). For example, the "organ of Corti" will turn into the spiral auditory organ (of Corti). This revised nomenclature build as much as possible on existing terms that have explanatory value while keeping the recognition of discoverers alive to allow a transition for those used to the eponyms. Once implements, the proposed terminology should help future generations in learning the structure-function correlates of the ear more easily. To facilitate future understanding, leading genetic identifiers for a given structure have been added wherever possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...